

Content : Deep Learning and Reinforcement Learning Training (2 days)

Audience

Knowledge on AI Technology

Content of the Training:

Day 1: Deep Learning

- Introduction to Deep Learning
 - What is deep learning?
 - Applications of deep learning
 - Basic terminology (neural networks, layers, activation functions, etc.)
 - Neural Networks and Activation Functions
- Structure of a neural network
 - Types of layers (input, hidden, output)
 - Common activation functions (sigmoid, ReLU, etc.)
 - Hands-on exercise: Implementing a simple neural network from scratch
- Training Neural Networks
 - o Loss functions and optimization algorithms (gradient descent, backpropagation)
 - Regularization techniques (dropout, weight decay)
 - Tips for effective training (learning rate, batch size, etc.)
 - Hands-on exercise: Training a neural network using a deep learning framework (e.g., TensorFlow, PyTorch)
- Convolutional Neural Networks (CNNs)
 - Motivation and architecture of CNNs
 - Convolutional layers, pooling layers
 - Common CNN architectures (LeNet, AlexNet, etc.)
 - o Hands-on exercise: Implementing a CNN for image classification
- Recurrent Neural Networks (RNNs)
 - Introduction to sequential data processing
 - Structure and functioning of RNNs
 - Applications of RNNs (sequence generation, language modeling, etc.)
 - Hands-on exercise: Building a simple RNN for text generation
- Transfer Learning and Pretrained Models
 - Leveraging pretrained models for transfer learning
 - Fine-tuning and feature extraction
 - Hands-on exercise: Using a pretrained model for a different task
- Generative Adversarial Networks (GANs)
 - Introduction to generative models
 - GAN architecture and training process
 - Generating realistic images with GANs
 - Hands-on exercise: Creating a basic GAN for image generation
- Applications of Deep Learning
 - Overview of deep learning applications in various domains (computer vision, natural language processing, etc.)
 - Recent advancements and future trends in deep learning

Day 2: Reinforcement Learning

- Introduction to Reinforcement Learning (RL)
 - What is RL and why is it important?
 - o Key concepts: agent, environment, states, actions, rewards
 - RL terminology (Markov Decision Processes, policy, value functions, etc.)
- Markov Decision Processes (MDPs)
 - Formal definition of MDPs
 - Value iteration and policy iteration algorithms
 - Hands-on exercise: Solving a simple MDP problem
- Q-Learning and Temporal Difference (TD) Learning
 - o Introduction to Q-Learning
 - o Exploration vs. exploitation trade-off
 - o TD learning and the Q-Learning algorithm
 - Hands-on exercise: Implementing Q-Learning for a simple RL problem
- Deep Q-Networks (DQNs)
 - o Challenges of using Q-Learning with large state spaces
 - o Introduction to DQNs and the role of deep neural networks
 - o Experience replay and target networks
 - Hands-on exercise: Building a DQN for a RL task using a deep learning framework
- Policy Gradient Methods
 - Introduction to policy gradients
 - o Policy parameterization and the policy gradient theorem
 - REINFORCE algorithm
 - o Hands-on exercise: Implementing a basic policy gradient